A review of visual inertial odometry from filtering and optimisation perspectives
نویسندگان
چکیده
A review of visual inertial odometry from filtering and optimisation perspectives Jianjun Gui, Dongbing Gu, Sen Wang & Huosheng Hu To cite this article: Jianjun Gui, Dongbing Gu, Sen Wang & Huosheng Hu (2015) A review of visual inertial odometry from filtering and optimisation perspectives, Advanced Robotics, 29:20, 1289-1301, DOI: 10.1080/01691864.2015.1057616 To link to this article: http://dx.doi.org/10.1080/01691864.2015.1057616
منابع مشابه
Keyframe-based visual-inertial odometry using nonlinear optimization
Combining visual and inertial measurements has become popular in mobile robotics, since the two sensing modalities offer complementary characteristics that make them the ideal choice for accurate Visual-Inertial Odometry or Simultaneous Localization and Mapping (SLAM). While historically the problem has been addressed with filtering, advancements in visual estimation suggest that non-linear opt...
متن کاملPI-VIO: Robust and Efficient Stereo Visual Inertial Odometry using Points and Lines
In this paper, we present the PerceptIn Visual Inertial Odometry (PI-VIO), a tightly-coupled filtering-based stereo VIO system using both points and lines. Line features help improve system robustness in challenging scenarios when point features cannot be reliably detected or tracked, e.g. lowtexture environment or lighting change. In addition, we propose a new lightweight filtering-based loop ...
متن کاملStereo-vision-based navigation of a six-legged walking robot in unknown rough terrain
This paper presents a visual navigation algorithm for the six-legged walking robot DLR Crawler in rough terrain. The algorithm is based on stereo images from which depth images are computed using the SemiGlobal Matching (SGM) method. Further, a visual odometry is calculated along with an error measure. Pose estimates are obtained by fusing inertial data with relative leg odometry and visual odo...
متن کاملVision-Aided Absolute Trajectory Estimation Using an Unsupervised Deep Network with Online Error Correction
We present an unsupervised deep neural network approach to the fusion of RGB-D imagery with inertial measurements for absolute trajectory estimation. Our network, dubbed the Visual-Inertial-Odometry Learner (VIOLearner), learns to perform visual-inertial odometry (VIO) without inertial measurement unit (IMU) intrinsic parameters (corresponding to gyroscope and accelerometer bias or white noise)...
متن کاملVisual and Inertial Odometry for a Disaster Recovery Humanoid
Disaster recovery robots must operate in unstructured environments where wheeled or tracked motion may not be feasible or where it may be subject to extreme slip. Many industrial disaster scenarios also preclude reliance on GNSS or other external signals as robots are deployed indoors or underground. Two of the candidates for precise positioning in these scenarios are visual odometry and inerti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced Robotics
دوره 29 شماره
صفحات -
تاریخ انتشار 2015